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The fully developed laminar flow of air over water confined between two infinite
parallel plates was used to study nonlinear effects in the generation of surface waves.
A linear stability analysis of the basic flow was made and the conditions at which
small amplitude surface waves first begin to grow were determined. Then, following
Stewartson & Stuart (1971), the nonlinear stability of the flow was examined and
the usual parabolic equation with cubic nonlinearity obtained for the amplitude of
the disturbances. The calculation of the linear stability characteristics and the
coefficients appearing in the amplitude equation was a lengthy computational task,
with most interest centred on the coefficient of the nonlinear terms in the amplitude
equation. In two profiles, used as crude models of a boundary layer flow of air over
water, the calculations indicated that, over a range of parameters, the non-linear
effects would reduce the growth rate of the surface waves and hence lead to
equilibrium amplitude waves.
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452 P. J. BLENNERHASSETT

1. INTRODUCTION

In a recent review article, Barnett & Kenyon (1975) begin by pointing out that ‘the central
problem of how the wind generates waves in the ocean has not yet been solved; the primary
physical mechanism(s) by which the wind makes waves has not been found’. This conclusion
is essentially the same as that reached by Ursell (1956) despite the large amount of theoretical
and experimental investigation into the problem which Ursell’s review stimulated. The main
achievements of the work in the period 1956-75 are discussed by Barnett & Kenyon (1975),
and so here we will only consider how our approach to the question of wind generation of
surface waves differs from previous theories.

The two rational theories of wave generation reviewed by Barnett & Kenyon are both linear
theories, and hence restricted to small amplitude waves. The analysis of Phillips (1957) predicts
that turbulent pressure fluctuations in the air generate small surface waves that grow linearly
with time, while the work of Miles (1957), with subsequent extensions by Benjamin (1959) and
Miles (1959, 1960, 1962), leads to an exponential growth rate for small waves. The primary
objective of this work is to attempt to remove the restriction to small amplitude waves, and
hence investigate the effect of nonlinearity on the growth of surface waves.

The analyses of Miles and Benjamin use several techniques from linear stability theory to
calculate surface forces on small waves; a natural extension would be to apply the methods of
nonlinear hydrodynamic stability to examine the effect of finite amplitude. However, to isolate
completely nonlinear effects it is necessary to make several restrictions on the velocity profiles
examined. Rather than study the nonlinear stability of a velocity profile where the water is
assumed to be inviscid and the velocity in the air is given by an empirically determined turbu-
lent mean flow profile, we shall examine the stability of laminar flow of air over water, where
viscous effects are taken into account in both fluids. Calculations of the linear stability of
laminar air over water profiles have been made by Lock (1954), for the case of boundary layer
flow, and Feldman (1957), for semi-infinite plane Couette flow; unfortunately both calculations
suffer from the same error, and the effect on the results of this mistake has not been evaluated.
More recently Valenzuela (1976) has examined the growth of surface waves in turbulent mean
profiles, but without decoupling the air and water motion as in the Miles (1957) calculation.
All of these linear stability calculations have considered flows in infinite domains; however for
definiteness, nonlinear stability calculations must be performed in finite domains, and so here
we consider the flow of air and water to take place between two infinite, horizontal parallel
planes. This final restriction causes the velocity profiles studied to be very different from those
occurring in oceanic situations, but it is hoped that the information gained from the nonlinear
stability calculation for the laminar flow profiles will be of some relevance to more general
velocity profiles.

The flow studied is the fully developed laminar flow of air over water, and hence the velocity
is at most a quadratic function of the distance across the channel. By allowing the upper plate
to move relative to the lower boundary a range of velocity profiles can be obtained; here we
examined the stability of four profiles. When the motion is driven solely by a constant pressure
gradient we obtain the two-fluid analogue of plane Poiseuille flow (denoted hereafter by p.P.f.).
Similarly, when the motion is due entirely to the relative motion of the two plates we obtain
the profile that is the two-fluid analogue of plane Couette flow (denoted hereafter by p.C.f.).
Also, a crude model of a boundary layer profile (denoted b.l.1 or b.1.2) could be obtained by
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ON THE GENERATION OF WAVES BY WIND 453

adjusting the pressure gradient and velocity of the upper plate so that the velocity gradient
at the upper plane is zero (figure 1). In b.l.1, p.P.f. and p.C.f. the depths of the air and water
layers were equal, while in b.1.2 the water was twice as deep as the air layer.

Having chosen suitable velocity profiles, a linear stability analysis was performed to determine
the neutrally stable flow conditions; this contrasts with the Miles—Benjamin approach and most
experimental work, where the emphasis is on determining wave growth rates rather than the
conditions at which waves first start to grow. A nonlinear stability analysis, which followed
Stewartson & Stuart (1971), resulted in the amplitude equation

04 0?4 4y

— — 112
oy ~Gaggm = g A+edldP, (1.1)

o -

Ficure 1. The b.l.1 velocity profile.

where the amplitude of the surface wave is proportional to 4. The scaled length and time, §
and 7, and the complex constants a,, d; and « are defined in §2.3. The constants g, and d,
are properties of the flow obtained from linear theory, while the effect of nonlinear interactions
is determined by &. The main result of the numerical computations that lead to values for «
was that for the profiles b.l.1 and b.1.2 the real part of k was, in general, negative. Thus in
these profiles nonlinear effects tend to decrease the growth rate of surface waves and hence
give rise to equilibrium amplitude waves.

Although (1.1) strictly only applies to laminar flow profiles, there is some experimental
support for the applicability of equations similar to (1.1) to more realistic wind-wave generation
situations. The experimental work of Lake & Yuen (1977) has suggested that wind-waves at
fixed fetch and under steady wind conditions have properties very similar to nonlinear Stokes
wavetrains. The wind-waves given by the equilibrium amplitude solutions of (1.1) (for k; < 0)
are also similar to Stokes wavetrains, with nonlinear effects leading to changes in the phase
speed of the wave and providing the sideband instability mechanism leading to the break-up
of the wavetrain (Stuart & Di Prima 1978). Thus the approach used here may be relevant to
the general problem of wind-wave generation, although the conclusions based on the values of
k calculated for laminar profiles may not extend to more realistic velocity distributions.

The analysis leading to (1.1) i§ contained in §2. The basic flow and linear stability problems
are formulated in §2.1, and the conditions under which it is sufficient to consider only

43-2
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454 P.J. BLENNERHASSETT

two-dimensional disturbances are derived. The results of the linear stability calculations are
given in §2.2; the physical properties of the air and water used in the computations are
given in table 1. The nonlinear stability analysis leading to the definition of the constants in
(1.1) is given in §2.3 and the results of the computations to obtain numerical values for « are
presented and discussed in §3. Appendix A contains the details of the numerical schemes as
well as the details of the checks on the computational procedure. Finally, appendix B contains
an alternative formulation for the definition of the critical constants appearing in (1.1).

TABLE 1. PHYSICAL PROPERTIES OF AIR AND WATER AT 15 °C
(from Batchelor 1967)

density kinematic viscosity
gcm™3 cm? st

air 1.225 x 10-3 0.145

water 0.9991 1.138 x 10~2

Surface tension between air and water = 73.5 dyn cm™ (73.5 x 10-3 N m~1).

2.1, THE BASIC FLOW, AND FORMULATION OF THE
LINEAR STABILITY PROBLEM

The basic flow considered is the steady, fully developed laminar flow of two superposed fluid
layers confined between two horizontal parallel plates; the flow is generated by the combination
of a pressure gradient and the movement of the upper plate (parallel to the pressure gradient)
relative to the lower plate. The two fluids are taken to be immiscible and, in the steady state,
the interface between the two fluids is a plane parallel to the bounding plates. We chose
Cartesian coordinates Ox*y*z* such that, in the steady state, the plane Ox*z* coincides with
the interface, and the y*-axis is normal to the interface and in the opposite direction to the
gravitational force. The x*-axis is parallel to the direction of the basic flow and so, in the
upper fluid, the velocity vector U* = (U*, *, W*) has the form (U (y*), 0, 0) in the basic
flow. At this point it is convenient to introduce a notational convention that will be used
throughout this work, upper case symbols are used to denote the dependent variables in the
upper fluid and lower case symbols denote dependent variables in the lower fluid. Thus, in
the lower fluid the velocity vector is u* = («*, v*, w*) and in the steady state &* has the form
(uf(y*), 0, 0).

For the upper fluid the governing Navier-Stokes equations are

* * U* oU* 1 OP¥
aaltj,‘v: + U* aa(j*-FV* aa_lj* +W*6z;l: =—E'5x—*'A+V2V2U*,
2
W e E OV OV LR G ot
at*+U ax*+V ay*+W 0z*  p, dy* g+ ViV (2.1)
ow* ow* . OW* « OW* 1P} N
5 + U* e +V aF + = o, az*+V2V Wk,

where V2 = 02/0x*2 4 02/0y*%+ 0%/0z*2, g is the acceleration due to gravity, and p, and v, ‘
are the (constant) density and kinematic viscosity, respectively, of the upper fluid. Similarly
the density and kinematic viscosity of the lower fluid are denoted by p; and », respectively.
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ON THE GENERATION OF WAVES BY WIND 455

It is convenient to remove the gravitational body force from the y*-momentum equation by
introducing a modified pressure such that

PX = P*—pygy*,|
Pt = p*—prgy*.)

This transformation causes the gravitational effects to appear explicitly in the interface con-
ditions. The boundary conditions are those of no slip on the upper and lower plates and at the

(2.2)

interface we must have continuity of velocity and stress. Thus if the upper plate, y* = D, has

velocity Uj relative to the lower plate, y* = —D,, and if the pressure gradient is
op*  opP*
Fr (2:3)

then the basic flow is governed by

Uf = Ui on y* = D,,
G d2Us
MR TS
dug dU¥
ujy = UY, ﬂla‘y%=ﬂza;£ on y* =0, (2.4)
G d2ui
BT
4, =0 on y=-—D,.
The solution of (2.4) is
GD3 (y* y*  p(i+4d) dy* /Dy + pt
U (y* =__.__2(__—1) (— ) U 2 2.5
%) 2, \D, D, d(u+d) utrd (2.50)
GD} p (dy* * 144 (dy*/Dy+ 1)
w0y =GR (dg* 1)(y___ ) #{dy* /Dy
ugs (4*) S, d (D2 ) (5, e +0 Tl (2.50)
where we have introduced the non-dimensional constants
d=DyDy, p=L222_02 5 pip, and v = vy, (2.6)
PiV1 M

The mean velocity Uy is given by

1 0 D,
_ ——— * * % *
Unm D, 1D, (f_Dl up dy ’*‘fo Ussdy ),

and as the basic flow depends linearly on G and Ui, Uy may be expressed as the sum of the
mean velocity caused by the pressure gradient and the mean velocity due to the motion of the
upper plate. Thus if Un is used to scale the velocity field we would have that

1 = Up-l— Ut, v (27)
where U, is the dimensionless mean velocity due to the pressure gradient and similarly U, is

the non-dimensional mean velocity due to the motion of the upper boundary. The non-
dimensional basic flow is then

Uio) = g = ~Blr-1) s+ D] +cua+n (284)
and | up(y) = % - —-gB(yd+ 1) ( —%)+/L(,(yd+ 1), (2.80)
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456 P.J. BLENNERHASSETT
where y = y*/D,, (2.8¢)
_ p+d3 _1_,u(1 +d)]“1
B = Up[6d2(1+d) 2d(p+d)] (2:84)
_ 2(1+4d)
and C = (1-Up) FEddize)” (2.8¢)

Thus for U, = 1 the upper plate is stationary, and the flow is driven by the pressure gradient,
while for U, = 0 the motion is generated entirely by the relative motion of the boundaries;
these two cases are the two fluid analogues of plane Poiseuille flow and plane Couette flow
respectively. Another velocity profile of interest here occurs when the shear stress on the upper
plate is zero. This happens when

_ 2(14d)d (,u+d3 +1,_u+d) {1+ p+d
P oardd+2p) \643(1+d) " 2du+d 3d[pu+d(d+2u)]
ﬂ(1+d)( d(1+4) )}“I
e\ avda@re)) Y

and it is this velocity profile which we use as a crude model of the boundary layer flow of air
over water in oceanic situations.

Having defined the basic flow we can now formulate the non-dimensional equations that
govern its stability. The motion is governed by the three-dimensional Navier-Stokes equations
in each fluid layer, together with no-slip conditions on the boundaries and continuity of stress
and velocity across the unknown interface y = 7(x, z, t). Thus, if the basic flow is perturbed
by infinitesimal disturbances resulting in a velocity field

u = [un(y), 0, 0]+ o{[u(y), v(y), w(y)] e*or=ked  c.c.},
pp = xuy /R + 8[pp(y) elkero—ked 4 c.c.]
and n = S[aeitketl—ked y c.c], |0] < 1,
where the velocity is scaled by Un, ‘
x = x*/Dy, z=z¥/D,, t=t¥Un/Dy, P = P*[p,U%, p =p*/p,Us (2.10)

and c.c. denotes a complex conjugate, then the linearized equations of motion are

U=V=W=0 on y=1, (2.11q)
ik(Uy—¢) U+ VU, = —ikP+R[U" — (k*+ (%) U], (2.110)
k(Uy—c)V=—=P +R[V"—(k*+1%) V], (2.11¢)
ik(Uy—c) W= —ilP+RW"— (k2+1%) W], (2.114d)
KU+ V' +ilW = 0, (2.11¢)
velocity: utauy, = U+aly, v="V, w=W;
kinematic: ik(up—c)a = v, k(Uy—c)a =7,
tangential stress: ' +ikv = p(U'+ikV), w'+ilv = u(W’'+ilV); on y =0 (2.12)
normal stress: pp—ﬂ'a'—]—)z—é vV —Ta(k*+12) = pP—pg‘"a—g}g V'


http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

o \

A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON THE GENERATION OF WAVES BY WIND 457

u=v=w=0 on y= —d7 2.13a)

ik(up —¢) u+vuy, = —ikpp+ (vR)™1 [u” — (k2+12) u],
ik(up—c) v = —pp’+ (VR)~1 [v" — (k2 + [?) v],

ik(up —c) w = —ilpp+ (vR) ™! [w" — (k*+ 12) w],

iku+v' +ilw = 0. (2.13¢)

2.135)

(
(
(2.13¢)
(

2.134)

The additional parameters are a Reynolds number, R, a Froude number, % and a Weber
number, 7, given by

R = UnD,/v,, F =gD,/UZ, and I = S/p,UD,, (2.144a, b, ¢)

where § is the dimensional surface tension between the two fluids. The disturbance has wave
numbers £ and / in the x- and z-directions respectively and phase speed c¢; the flow is unstable
to these disturbances when ¢; > 0. We recall that originally, the interface conditions were to
be applied on the unknown surface y = 7(x, z, t), while in (2.12) we see that the interface
conditions are being applied at ¥ = 0. This transformation has been obtained by noting that
for small displacements of the interface, the velocity and pressure at y = 5 can be adequately
calculated from their respective Taylor series about y = 0. This device is frequently used in
problems involving conditions on an unknown interface.

From (2.11), (2.12) and (2.13) we see that the stability of the basic flow is a function of seven
independent non-dimensional parameters: two parameters, say p and », to describe the fluids;
Uy to describe the velocity profile; a parameter d giving the geometry of the flow and three
dynamic similarity parameters R, % and 7. However, owing to our particular interest in the
combination of air over water, we can regard p and v (and hence u) as fixed. Further, the
dimensional properties p;, p,, v}, v, and § are fixed, as is the acceleration due to gravity,
and hence we find that R, # and J are no longer independent. In fact we find that R-47 3%
is a non-dimensional constant depending only on g and the physical properties of the fluids
and so only two of these three quantities can be chosen to be mdependent parameters of the
problem.

The Reynolds number is taken to be one of the independent parameters and the choice of
the remaining parameter is motivated by considering how experiments on this problem would
be performed. First the fluids would be chosen, and in an apparatus of fixed size the experimenter
would determine the mean velocity at which the flow first became unstable. Thus in an experi-
ment both the geometry (D, and D,) and the fluid prdperties are fixed, and so for a given
experimental situation

FR? = constant, say F = gD3/v} 1

(2.15)
and J R* = constant, say T = SD,/p, vg.j

By changing the geometry of the apparatus, i.e. changing D,, F and 7 are changed, even for
fixed fluids. Thus the thickness of the upper layer can be regarded as a parameter relevant to
the problem. However it is unsatisfactory to have a dimensional quantity as a governing
parameter; this difficulty can be overcome by noting that the non-dimensional number

ks = [“_STﬂf]% = [(ﬁ-‘%ﬁz—)—g]%Dz (2.16)
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is proportional to D,, the constant of proportionality being a property of the two fluids only.
Thus, for fixed fluid properties, ks reflects changes in geometry of the flow. In fact £s is just the
non-dimensional wavenumber of the inviscid surface wave with minimum phase speed.

Further justification for this choice of scaling can be obtained by considering the relation
between the stability of two- and three-dimensional disturbances. Following Squire we intro-
duce new variables given by

m? = k2412,

U=mYkU+IW), &= m(ku+lw),

V=1, P =

‘o R = kR/m, (2:17)
b = (m/k) p, P = (m/k) P

d = (k/m)a

After some manipulation we obtain the system

~ A

U=V=0ony=1,
im(Uy—&) U+ VU, = —imP+R1(U"—m20),
im(Uy— &) V = =P+ RV —m?P),
imO+V" = 0,

im(up—¢€) d =0, im(Uy—¢)d =7, on y=0

A

im(up— &) d+0uy, = —impp + (vR)1 (4" —m2d),
im(up— &) 9 = —pp’ + (vR) (6" —m?0),
imd+9" = 0,
4=90=0 on y=-—dL

Thus we see that the gravitational and surface tension parameters ¥ and 7 are invariant under
the Squire transformation, so that a three-dimensional disturbance with wavenumbers £ and /
and parameters R, F and T is equivalent to a two-dimensional disturbance with wavenumber
(k% +12)¥ and parameters Rk(k2 4 [2)~% F and T. Hence, for fixed F and 7, the minimum critical
Reynolds number occurs for a two-dimensional disturbance.

As we need only consider two-dimensional disturbances I, W(y) and w(y) can be set to zero
in (2.11-13) and the remaining velocity components obtained from the stream functions @(y)

and $(y) by U 5
= 5 U= 5

V= —ik®, v =—iks.] (2.18)
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Thus the system governing the stability of the basic flow is
=90 =0 on y=1,
ik(Up —¢) (D" — k2D) —ikUp @ = R-1(DW) — 2k2Q" + kAP),

¢ = ®:
¢I__u{f)_—-¢ —_ @/__Ué¢
o o’

B+ k) = (@ + D)

;1]-3 (¢" — 3k2") +ik(Pup, — $'o) +i_/;_—§é _(_F_'iR{g;_?:)

= % (D" = 3K2D") + pik(PU;, — D'c) +

on y =0, (2.19)

pikD F
o R
ik(up —c) (¢" - B*@) —ikup$ = (vR)™ ($UV) — 220" + kigh),
¢p=¢ =0 on y=-—d?

where o = 4,(0) —¢ = Uy(0) —c.

Systems equivalent to (2.19) have been derived by Yih (1967) and more recently by Valen-
zuela (1976), although the relevance of F and T to the stability of two-dimensional waves was
not noted by them. Earlier, Lock (1954) and Feldman (1957) had derived similar coupled
Orr-Sommerfeld problems for the stability of superposed fluid layers, but unfortunately they
incorrectly omitted the u, ¢/ and Uy, ®/o terms from the second interface condition, shown in
(2.19).

In general the solution of (2.19), and the location of the neutral stability curve in the R, £-
plane, is a computational task, and full details of the numerical techniques used are given in
appendix A. Section 2.2 summarizes the computational work and discusses the results obtained,
while the following two subsections contain two elementary analytical calculations, for limiting
cases of (2.19), which were used to check the numerical work.

2.1.1. The long-wave limit.

Here we consider the stability of the basic flow to long wave length disturbances. This was
first done by Yih (1967), but only results for the case p = 1 were given. Our analysis parallels
that given by Yih, and so we look for solutions of the form

¢~ co+key+ ...,
as k-0,

~ k cees .

¢~ Gothirt R, F, T fixed. (2.20)

D ~Dy+kDy+ ...,

At O(k% we obtain the homogeneous system
Dy =Py =0 on y=1,
0 = R-1Q{M,

up P U, D
=@, ¢i—20 = @=L o = uy—q,, 2.21
Po o Do e 0 p b= ¢Cp on y=0 ( )

Q= pB, (VR)GY = pRDY,
0= GR)T4E, go= gy =0 on y=—d

44 Vol. 298. A
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which has the eigen solution
d p—d?
— — 2 -

The eigenvalue ¢, is

¢o = un(0) +[2ud(1 +d) (U —ui)]/[4pd(1 +d)* + (p—d?)?], provided p # 1. (2.22)

The O(k) system is
D, =P;=0 on y=1,

(U —co) @y—iUy B, = R-1DI),

¢1 = ¢13
, U ¢ , U, ¢
fiopy () = i3 (nr o) 20
” ” on y = .
P71 = pdy,
moorrogr ’ i F " [P ' 1D, F
(PR) 4 =347 = Joty) +120 25 = pRABY — pi(Byr— 0, ) + .

i(un — o) Po—iuygy = (VR)™L ),
¢1=¢i=0 on !/=“d~1,

and as @y, D, and ¢, are real, we see that ¢, is purely imaginary. The homogeneous part of
(2.23) is the same as (2.21), so the non-homogeneous system can have a solution only if the
forcing terms satisfy certain conditions. These conditions can be found by explicitly solving
(2.23) (see Yih (1967)), but it is easier to introduce the adjoint functions ¥ and ¥ and invoke

a solvability criterion. The system adjoint to (2.21) is
Y=¥ =0 on y=1,

0 = R-1yiv,

'10 = y_’/, 3&, =¥,

,lp,ll —_ ﬂTII, zﬁll/__,_% wl —_ IlL (T//l_% Tl)’

0 = (PR,

on y =20 (2.24)

Yy =9y >0 on y=-—d71,
with adjoint condition

—d-1

0 1
[ vonm g ayep [ wraam gy
0

0 1

- f PR Y dy +p f BRI dy = 0. (2.25)
—d- 0

(The adjoint system for the complete coupled Orr—Sommerfeld problem (2.19) is used in the

nonlinear stability calculation and is derived in §2.3.1. The above system is readily obtained

from (2.35) by taking limits analogous to (2.20).)
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The eigenvalue ¢, in the adjoint problem is the same as in (2.21), while the adjoint functions
are

_ o[ m—d*+4d(1+d)
R e e R

and ¥ o= (y+d)? [y dz(”_d;i;f%ﬂ(ududz]. (2.26)

When the solvability condition is applied to (2.23) we obtain the following expression for ¢, :

00 (LR) Yy~ Uy) = —iy [““P) (650 = doti) ‘@%5‘@]

i Viw—a) gi-uid dy

1. :
+pi [ (U =co) B3 U3 0] dy,

where any function that is not integrated is evaluated at y = 0. To this order in £, the condition
for neutral stability is that ¢; = 0, which gives the value

&= oo~ [ vt =) gi-1i9a dy

+o [ WG —e) Bi-Tyog g} (220

for neutral stability. Here (2.27) has been simplified by using the fact that ¢, and ¢ have been
normalized to unity at y = 0.

2.1.2. The limit of slow basic flow

When the Reynolds number for the basic flow becomes small we look for solutions of the

form
¢~ Ry+ei+...,

¢~ Po+Rp+...,} as R—0, Fand T fixed. (2.28)
D~ DPy+RD,+ ...,

The governing equations are then

Gy=Dy=0 on y=1, )
—ikey (D — B2Dy) = DY — 2k2D; + KD,
¢0 = ¢o> ¢6 = Dy,
Po+k2dy = p(Do+kD,),
vH(go — 3k2q) +ikeo Bg — (ko /co) (F+4*T)
= p(Py — 3k2Q;) + pikey D — (pikPo/c,) F,
—ikeo(Bo —k2po) = VL™ — 2k + K6),
$o=¢h =0 on y=—dN

on y=20) (2.29)

44-2
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The equations (2.29) are recognized as those governing small disturbances in two motionless
fluids, and so we can expect all perturbations to be damped. The solution of (2.29) is

@, = A[cosh k(y — 1) —cosh A(y —1)] + B[sinh A(y —1) — (A /k) sinh k(y —1)],

where A% = k2—icyk,

d
" ¢o = a[cosh k(y +d~*) —cosh y(y +d~)] + b[sinh y(y +d) — (y/k) sinh k(y +dV)],

where v? = k2—1vcyk.

The eigenvalue ¢, and constants 4, B, a and é are obtained by enforcing the interface con-
ditions. This leads to a homogeneous 4 x 4 set of equations which have non-trivial solutions
only at certain values of ¢, ; the determination of these eigenvalues is in general a computational
task. However, for air over water, where p ~ 10=% and ¥ and 7 are relatively large (approxi-
mately 10 for ks = 3.65) it can be shown that the eigenvalues can be put into two classes:
there are two complex values for ¢, and an infinite sequence of purely imaginary eigenvalues.
The complex eigenvalues correspond to weakly damped surface waves, one travelling in the
+ x-direction, the other in the —as-direction. The negative imaginary eigenvalues can be
further subdivided into those associated with diffusive effects in the water (Lamb 1932, p. 628)
and those due to diffusive effects in the air.

The eigenfunction associated with the latter values of ¢, have @, ~ O(1) and ¢, = O(p),
and hence represent a motion confined mainly to the air.

2.2. RESULTS OF THE LINEAR STABILITY CALCULATIONS

The coupled Orr—Sommerfeld problem (2.19) was solved numerically by using a finite
difference approximation to the equations and boundary conditions. The difference scheme
used was similar to that described by Osborne (1967), where the truncation error of the
difference approximation is O(4*) for a uniform grid with step length 4. For given R and £ the
eigenvalue ¢ was found by using a Muller iteration scheme. Then for fixed £, Muller’s method
was used to determine the value of R, for neutral stability and finally a Muller iteration method
was used to locate the critical conditions k. and R.. Most of the neutral curves were determined
on relatively coarse meshes, giving only 5-109, accuracy. However, when calculating the
critical conditions the step size was progressively reduced until five significant figures could be
guaranteed in R.. Under these conditions k. would usually contain at least four significant
figures.

The numerical scheme developed to solve (2.19) was checked by comparing results from the
program with the analytical solutions given in §§2.1.1 and 2.1.2 and with published results
for problems that are special cases of (2.19). Full details of these tests and the details of the
finite difference scheme are given in appendix A.

As well as providing a check on the program, the solution given in §2.1.1 also provides a
starting point for the determination of the neutral curves. From §2.1.1 we see that in the limit
k — 0 the growth rate of disturbances is O(k), and hence the Reynolds number axis is part of
the neutral curve. For a given velocity profile, the Reynolds number at which the neutral
curve branches off the axis is given by (2.27) ; the remainder of the neutral curve is then found
by gradually increasing £ and using the last known R, as the initial approximation for the
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Muller interation to find the current position of the neutral curve. In general this technique
worked well, and some neutral curves typical of the results obtained are shown in figures 2-5.

From figure 2 we see that for the p.P.f. profile the neutral curve is a continuous curve joining
the R-axis at the point given by (2.27). However, for the b.1.1 and b.1.2 profiles, the complete
set of neutrally stable disturbances could not always be found by following the neutral curve
away from the long-wave instability. For ks = 3.65 (figure 4) the neutral curve is similar to

6 —
surface wave
P mode
air shear wave
surface waves l mode

2l unstable — shear waves

—— _=unstable
|

0 4000 8000
R .

Ficure 2. Neutral curves for p.P.f. profile with £,= 29.2. R_;,, minimum value of R for
long-wave instability.

6
4
k
>0
ol ¢;<0 ;<0
0.1—
| ] |
| [ 1 | 11000 12?0
0 L1000 ————— 2000

. R
Frcure 3. Neutral stability curve for surface waves in p.P.f. profile with &, = 7.3.

those for p.P.f., while for £s = 14.6 (figure 5) an island of instability appears between the
wavenumber axis and the main part of the neutral curve. The origins of this island of insta-
bility can be seen in the calculations for small values of ks, as the damping ( —¢;) has a local
minimum for R < Re. As £s is increased this region of weak damping gives rise to the island
of instability; further increases of ks merely increase the size of the island, with no new islands
appearing. The p.P.f. profiles were examined for any similar islands of instability, but none
were found.


http://rsta.royalsocietypublishing.org/

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY /\

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

464 P. J. BLENNERHASSETT

The behaviour of the neutral curve for small £, as shown in figure 3, is typical of the results
obtained for all the profiles examined. Initially R, increases as £ increases from zero, and in
this range of £ we expect the results of the limiting process (2.20) to apply. However, examin-
ation of §2.1.1 shows that the expansion (2.20) for ¢ becomes invalid when F ~ 0(£2), and
hence the viscous long waves predicted in §2.1.1 exist only for k¥ < O (¥-%). For air over water
F ~ 10% /3. Thus we require £ < 0.03 k;# for the results of §2.1.1 to apply. For slightly larger
k, gravitational effects outweigh viscous effects, and the long-wave solutions obtained numeri-
cally correspond to essentially inviscid long waves. In this range of £ the value of R, decreases
as k increases and the neutral curve appears to be cusped near &k &~ 0 (F-%). However, a close
examination of the numerical results in this range showed that the transition from viscous to
inviscid long waves was quite smooth.

¢;=—0.00202, —0.00096,—0.00098, ~0.00087

A+ VL

1 | 1
0 800 1600
R

F1curke 4. Neutral curve for surface waves in b.1.1 profile with k, = 7.3. Rg,, minimum value of R
for long-wave instability.

4
k
2 ¢;<0 ¢;<0 ¢;>0
;<0 a
| ! L 1 | ! |
0 800 1600 3600
R

Ficure 5. Neutral curve for surface waves in b.l.1 profile with k, = 14.6. (2) Neutral curve
obtained by starting from long-wave instability.

The results of §2.1.2 indicated that the eigenvalues of (2.29) can be separated into two
groups, and clearly this separation will continue to apply for non-zero R. Thus the eigen-
solutions of (2.19) will represent either surface wave disturbances, associated with the two
complex eigenvalues at R = 0, or shear wave disturbances that have developed from the
purely imaginary eigenvalues at R = 0. The mode of instability defined by the neutral curves
in figures 2-5 was found to be the surface-wave mode. Initially this was ascertained by tracing
the development of both surface modes and shear modes as R increased from zero; invariably
it was the downstream travelling surface-wave mode which first became unstable.

The surface wave is just a weakly damped (or growing) ‘inviscid” water wave, the shearing
air flow over the wave being responsible for transferring energy to the wave to overcome viscous
dissipation (Miles 195%7). The eigenfunction shown in figure 6 supports this view, as the stream
function in the water is approximately that of an inviscid wave. However the characterization
of the surface mode as an inviscid water wave is not completely correct as the phase speed of
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14
&,
/;j] Qr
{ ¥ 0
::J 1.2
—
oF ]
=
= O
= O
v -1

Ficure 6. Eigenfunction at critical conditions for b.l.1 profile with k£, = 58.4. x , Points on streamfunction for
inviscid surface wave for £ = 2.643. '

TABLE 2. CRITICAL CONDITIONS FOR P.P.F. PROFILE

=l N
3z
ofe)
=
-5
o9
RA<LO
o(h
=%
oy
o=

inviscid
wavespeed
k, D,/cm R, k, c, fork = k, F T

3.647 1 380.56 1.8177 0.7112 0.457 0.322 0.0242

7.295 2 445.32 2.5426 1.173 0.904 1.88 0.0353
14.59 4 789.74 3.7504 1.446 1.16 4.78 0.0224
29.18 8 1835.3 4.042 1.619 1.33 7.08 0.00831
58.36 16 4263 4.627 1.798 1.51 10.5 0.00308

TABLE 3a4. CRITICAL CONDITIONS FOR B.L.1 PROFILE

inviscid
wavespeed
k, D,/cm R, k, ¢ fork = k, F g
P ‘ 3.647 1 589.87 1.4161 0.4059 0.311 0.134 0.0100
ol 7.295 2 1341.4 1.7501 0.4434 0.343 0.207 0.00389
ol 14.59 4 1142.3 1.9589 1.170 1.07 2.29 0.0107
< 29.18 8 2330.2 2.250 1.490 1.38 4.40 0.00516
>-4 >" 58.36 16 5173 2.643 1.743 1.63 7.13 0.00209
O = 116.7 32 12276 2.944 1.959 1.85 10.1 0.000743
=
= QO
I O TABLE 3b. CriTICAL CONDITIONS FOR B.L.1 PROFILE IN DIMENSIONAL VARIABLES
=w D, U, phase speed wavelength Uy shear stress
2‘ (£ cm cm st cm s~1 cm cm s dyn cm~—2
g0 1 242 34.7 4.44 8.20 0.0822
== 2 276 43.1 7.18 6.18 0.0477
OQ<) LOL 4 117 48.4 12.85 2.85 0.00995
8") 8 120 62.9 22.4 2.04 0.00507
4 16 133 81.8 38.1 1.52 0.00282
T 32 158 108.9 68.4 1.7 0.00167
B =
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the surface mode is always greater than the phase speed of the corresponding inviscid wave
(see tables 2-5).
TABLE 4a. CRITICAL CONDITIONS FOR B.L.2 PROFILE

inviscid
wavespeed
k, D,/cm R, k, c, fork = k, F g

3.647 1 269.83 0.87464 1.180 0.852 0.640 0.0481

7.295 2 293.85 1.3652 2.152 1.80 4.32 0.0810
14.59 4 674.69 1.5437 2.424 2.06 6.55 0.0307
29.18 8 1581.8 1.843 2.641 2.28 9.54 0.0112
58.36 - 16 3851 2.201 2.790 2.42 12.9 0.00377

TABLE 45, CRITICAL CONDITIONS FOR B.L.2 PROFILE IN DIMENSIONAL VARIABLES

D, U, phase speed wavelength U shear stress
cm cm st cm st cm cm st dyn cm~2}
1 141 46.1 7.18 6.05 0.00445
2 74.2 44.3 9.22 3.09 0.00117
4 87.9 59.2 16.3 2.38 0.00696
8 103 75.8 26.2 1.83 0.00411
16 126 97.4 45.6 1.42 0.00248
t dyn = 10°N

TABLE 5. CRITICAL CONDITIONS FOR P.C.F. PROFILE

inviscid
wavespeed
k, D,/cm R, k. c, fork =k, F Vs
3.647 1 849.42 1.5002 0.2556 0.213 0.0646 0.00485
14.59 4 5650.0 2.2810 0.2502 0.202 0.0934 0.000438

Neutral conditions for the shear wave mode could only be found for the p.P.f. profile.
Figure 2 shows the neutral curves obtained for both the surface and shear modes. For the
shear wave in the air the interface behaves effectively as a rigid boundary moving with velocity
Uy(0), and hence we can use the results of Reynolds & Potter (196%) for combined Poiseuille—
Couette flow to estimate the critical conditions. Taking into account the different scaling, we
find that, in the notation of Reynolds & Potter, the quantity uw = 0.092 for the air. Thus, in
our scaling, disturbances confined to the air would first become unstable when R = 12,000
and £ ~ 1.6. As the water surface has been approximated by a rigid boundary, the stability
of the air flow is then independent of gravitational and surface tension effects, and hence this
estimate of the critical conditions for shear waves applies to the p.P.f. calculation for all values
of ks. The results in figure 2 show that there is fair agreement between the estimated and
calculated critical wavenumbers, while the estimated critical Reynolds number is almost 30 9,
higher than the calculated critical value, R ~ 8800. This is fair agreement given the drastic
nature of the approximations involved.

For both b.l.1 and b.l.2 the Reynolds & Potter parameter uw = 3, and hence the shear
wave disturbances in the air will be damped for all R. Similarly, in the p.C.f. profile, where the
velocity distribution in the air is linear, the shear wave disturbances are always damped. Also,
in the cases examined, the surface wave, which for small R travelled upstream, always remained
damped. Thus, for the range of parameters considered, the stability of the p.P.f., b.l. and p.C.f.
profiles was determined by the downstream travelling surface-wave mode.
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Tables 2-5 give the critical conditions, as a function of ks, for the profiles studied. Included
in the tables are the values of &# and 7 at critical conditions, where these parameters have
been calculated by using (2.15) and (2.16). The non-dimensional constants at critical con-
ditions give little physical feeling for the problem, and so critical conditions for the b.1. profiles
are given in dimensional quantities in tables 35 and 4.

10~
ol 1.,
b 9 o
T 6 2%
B 4
b=
Q
(=) + 4
b 4’ e
2
k A
g2 6= 1
& 16 J
32— 32
7
1 | | L1 | | | LI
2 4 6 8 10 20 40 60 80 100
wavelength [em

Freure 7. Critical conditions for b.l.1 and b.1.2 compared with experimental conditions used in other work.

(@) Wilson et al. (1973); (b) Gottfredi & Jameson (1970). ¢, b.L.1 profile; +, b.1.2 profile. Depth of water/
cm shown at each point.

Comparison of these results with experimental results is difficult as, to date, there have been
no experimental investigations of the stability of the laminar flow of air over water; invariably
experimental investigations have examined wave growth (or decay) due to a turbulent air flow.
However it is still possible to make some qualitative comparisons with published experimental
results. Figure 7 shows the friction velocity u,, as a function of wavelength, at critical conditions.
Superimposed on this graph are the regions of u,/wavelength space considered by Gottifredi
& Jameson (1970) and Wilson ef al. (1973). (The friction velocity is defined by

2 = shear stress at interface
* density of air

and figure 7 is adapted from figure 2 of Larsen & Wright 1975.)

Gottifredi & Jameson (1970) claim that the minimum value of u, for wave growth is about
5 cm s~ for wavelengths of 4-8 cm, while from Wilson ez al. (1973) it can be inferred that the
minimum value of u, is about 8 cm s~ for the same range of wavelengths. Thus our laminar
flow calculations lead to values of u, similar to those determined by experiment. However,
the agreement with experiment is not as good as it first seems. The conditions that correspond
to the experimental apparatus of Gottifredi & Jameson occur for b.l.2 with ks = 14.6, i.e. a
water depth of 8 cm (Gottifredi & Jameson had a water depth of ca. 7 cm), for which
usy ~ 2.5 cm s~1, with a wavelength of 16 cm at critical conditions. Similarly, for Wilson ef al.
(1973), who used a water depth of ca. 46 cm, we would estimate a value of u, < 1.5 cms™!
at critical conditions.

45 Vol. 2g8. . A
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It is interesting to note that the critical conditions that fall below the experimentally investi-
gated régimes are all associated with the presence of the island of instability. As experimental
work has tended to examine the growth rate of waves for a fixed wind speed, it is possible that
growing long waves at small values of #, have not been investigated. Indeed, Wilson e al.
(1973) examined wind speeds of 20 cm 571, 112 cm s~! and 180 cm s, while for b.1.2 we find
that critical conditions can exist with a free-stream speed as small as 75 cm s2.

TABLE 6. WAVENUMBERS FOR EQUAL DISSIPATION IN
BOTTOM BOUNDARY LAYER AND BULK OF FLUID

depth of water

cm k/d
1 1.70
2 1.90
4 2.10
8 2.35
16 2.55
32 2.80

From the results for the profile b.l.1 it is evident that the finite depth of the water has a
significant effect on the determination of the critical conditions. In fact all the critical wave-
numbers are such that the energy dissipation due to the viscous layer on the bottom is of the
same order as that due to the approximately irrotational straining in the bulk of the fluid.
The ratio of dissipation at the bottom to the dissipation in the bulk of the fluid can be expressed
as (from Phillips 1969, ch. 3)

<g g)é Dt / 4(2v)} (j-;) sinh? (]Z;)

and the values of £/d at which this quantity is equal to unity are given in table 6.

For b.1.1 these wavenumbers are close to the critical wavenumbers in table 3, while in b.1.2
(where d = 0.5) the critical wavenumbers are all greater than the wavenumbers given in
table 6. Thus in b.1.2 the shearing air flow has only to supply sufficient energy to overcome the
damping due to the bulk straining, thus leading to lower u, and lower free-stream velocities
for the initiation of the waves. Profiles with smaller values for d were not considered as the
interface velocity increases as d decreases. In b.l.1 uy(0) = 59, of the free-stream speed and
in b.1.2 uy(0) ~ 109, of the free-stream speed. Any further decrease in the depth ratio would
make the basic flow too crude a model of both experimental and oceanic situations.

Another feature of the results for all the profiles studied is the prediction of rather large
wavelengths at critical conditions. Surface tension effects are important for £ > £s, but all the
critical wavenumbers are less than ks. Also, as the depth of water increases k. becomes much
smaller than ks and hence surface tension has little effect on the critical conditions. This is in
contrast to most observations where small scale capillary-gravity waves tend to appear. This
difference may be due to the fact that under experimental conditions with turbulent air flow
the Phillips (1957) mechanism may produce the small-scale waves, whereas in our laminar
flow profiles this mechanism is absent.
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2.3. THE NONLINEAR ANALYSIS

The results of the linear stability calculations for air over water have shown that the stability
of the basic flow depends on the growth or decay of surface-wave modes. For these modes a
critical point (Re, k¢) with k. # O exists, and the neutral curve in this region is similar to the
neutral curve for the plane Poiseuille flow of a homogeneous fluid. Thus we can apply the
theory of Stewartson & Stuart (1971) (hereafter referred to as S.S.) to calculate the nonlinear
effects on the growth of surface waves. Before proceeding with the nonlinear calculation it is
first necessary to obtain more information about the structure of the disturbance at critical
conditions, and we need to define a problem that is the adjoint of the system (2.19).

2.3.1. The adjoint system

If M is an ordinary differential operator over a region N, then the adjoint problem can be

defined by
[ @) ay = [ oprwyay = o.

However, we are interested in a problem where N consists of two sub-regions, and the way in

which the contributions from the sub-regions should be combined is not clear. This difficulty can

be avoided by using a formulation of the problem that involves variables that are continuous

at the interface of the sub-regions so that, effectively, we have only one region to consider.
Thus we define the quantities

- [—ik@ for 0 <y <1,
) = 1—ik¢ for —d!'<y <0,
U "@'—@U{)/a(y) for 0<y<1,
W= g - g foty) for —dl<y<t,
) (8" +k®)/(uy) R) for 0 <y <1, (2.30)
L@ +2)/(uy) B) for —dt <y <1,
_ o [F+RTH) 3k aly "
" - o|ra - e ) mare o o<y <
an
_[FRTG) L) g
"0) = 8| Sorats) ] |0 ol rmr o <<t
[ ()——c for 0<y<1, 551
where o) = \ub y—¢ for —-dl<y<O, (2.814)

and the step functions T'(y), p(y) and u(y) are given by

0 1
I(y) = | |

ply) = and  u(y) =
\8D,/p 13, Lpa/ps Lpa/pn for —dt <y <o.

(2.315, ¢, d)
Here V, U, 7 and n are the vertical velocity, horizontal velocity, shear stress and normal stress
on a material surface respectively, and hence are continuous at theinterface. If W™ = [V, U, 7, 2]
(WT is the transpose of W), then (2.19) can be written as
W' = SW, (2.324a)
45-2

(1 for 0 <y <1,
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i o'fo —ik 0 0]
(k*+ 0" /o) [ik o'fo R 0
d4iko’ F+ k2T 4k iko .
= | = 4 rT° - T . 2.326
S MR+ ok /tR+ - 0 ik ( )
. F+E2T .
—lkO'/p —;)-0‘—_7%'2—' ik 0-

The boundary conditions for (2.32) are
V=U=0 on y=—-d?1 and y=1 (2.33)
and W is continuous at the interface in the sense that
W(0~-) = W(0t).

We note that the elements of S are only piecewise continuous functions, with finite jumps at
y = 0, and hence W' also has finite discontinuities at the interface. Thus the problem is in
the form to which the usual theory of adjoints applies (Coddington & Levinson 1955). If
(WHT = [a*, 7+, U*, V*] is the transpose of the adjoint function, then we require

1

[ v —swydy = it w

1
—f W (W) +STW+ dy = o.
a1

—a-t
The contribution from the boundaries is zero if Ut = V* = 0ony =—d ' and y = 1, and
so writing S§t = — 87T, the adjoint system becomes
(WH) = StW+,
Ut=V+*=0 on y=-d?, y=1, (2.34)

W+ continuous at y = 0.

Although the matrix form of the problem and its adjoint is very compact, it is more con-
venient to work with a single fourth-order equation for the nonlinear analysis and for the

computational work. Thus if
( ¥ for 0<y<1,

v+ =
11// for —-dl<y<0,
then the adjoint system, at critical conditions is
Y=¥ =0 on y=1,
L+(W) = ike(Up—¢r) (W' —K2W) + 2ik Up W' — RY(WV - 202" + kg W) = 0,

p= Y=V, '
VR = u(P R,
- VRc N O'rVRc +1kco'l‘¢ G'I'Rg ! ( )
]}7///__3]‘:3 ' ZE 4 g/"+kgl[f . , ik WF
=p [“ R, o e Re tikeorw _FETR?]’

P) = kel —ex) (4" —R2) + 2ikeuty§ — (VRO (00— 2B2" + KA = 0,
p=y' =0 on y=—d
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where or = up(0) —¢r = Up(0) —¢r and p, p, v and T are the constants defined in §2.1. As
expected, the adjoint equation in each fluid layer is the same as the usual adjoint of the Orr-
Sommerfeld equation for a homogeneous fluid. In this formulation of the adjoint system we
have the relation

[ v [ vroya - [

—d-1

s dyp | OLHP = 0, (230
a-t 0

where L and [ are the Orr—Somnierfeld operators for the upper and lower fluids in (2.19).

2.3.2. The critical constants

Further properties of the disturbance near critical conditions can be found, by following
S.S., by expanding the frequency and eigenfunction as a Taylor series about the critical con-
ditions. Thus we write

—ike = —ikocr+iay(k—ko) — ay(k—ke)2+dy(R—Re) + ..., (2.37)

where ¢, is a real number, and g, has positive real part. Since d(kc) /dk|,, = —a,, we see that
—a, is the group velocity of the disturbance; a, is related to the curvature of the nose of the
neutral curve and d; represents the exponential growth of the wave for R > R.. For the stream
function formulation (2.19) we use the expansion

@ = D, + (k—ke) Dyg+ (R—Re) Byy+ (k—ko)® Dpp+ ... (2.38)

with a similar expansion for ¢ in the lower fluid, while for the matrix formulation (2.32) we
write
S =8+ k—ke) S+ (R—Re) Si1+ (k—ke)2Spa+ ... \

2.39
and W = W+ (k—ke) Wyg+ (R—Re) Wy + (k—ko) Wyg+ ... (2.39)

Substituting (2.39) in (2.324) and equating like powers of k-4, and R —R., we obtain

at 0(1),
W;—SII/VI =0, l

2.40
no slip on boundaries, J (2:40)

where  is the matrix S given by (2.32)) with R, k and ¢ taking the values Re, k. and ¢, respect-
ively. The adjoint to (2.40) is
(Wey—(=ST) WE = 0,)

2.41
no slip on boundaries, J (2:41)
where W7 is the adjoint function at critical conditions.
At O(k —k.) we get the system
Wie—S81W = SlOI/Vl’]\
(2.42)

no slip on boundaries, J

where §;, is given in appendix B. For (2.42) to have a solution the forcing terms must be ortho-
gonal to the adjoint function, i.e.

1
| sy = o (2.43)
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The matrix §)y has the form (4+a,B), and so (2.43) is an equation defining ;. In terms of
the stream function (2.43) is equivalent to the result
_ i0r¢1 r ’ ” 2 _2ikc¢1]//l(1_~/'l’)
&(CDEN) = -258Ls (i~ U3) (" + ) e Pabr =t
P b 6ikc . , ,
| Buth — B — p(0, Uy~ @, Ur) + 5 (91— )

F(un — 2¢r) (1—p) +k£2 T (3up — 4¢r)
th AR

+f L ViR vRe— ) (5~ ) + 6, (Ko + )] dy

1
+p f | PL(ike/Ro—Th) (B[ ~K0) + &, (2h20 + T})] 4y, (2.44)

where the mnemonic CDEN is given by

CDEN = 580 (4~ 03) (9 +12y) 44 [ o0 91— BT

chReOf
0 1
[ vgi-ke) dee [ w@-R0) . (29)

In (2.44) and (2.45) all quantities that are not integrated are evaluated at y = 0; this con-
vention will also be used in the definitions of a,, ¢; and «. This form for @, is analogous to the
definition given by (2.21) of S.S. for homogeneous fluids; here we have extra contributions
due to the presence of the interface.

Similarly at O(R — R.) we obtain the system

W{1 ‘Slm/u = S11 I’an

(2.46)
no slip on boundaries,J
where §}; is given in appendix B. The solvability condition for (2.46) is
1
[ worsumiay ~ o, (247
—d-t
which defines d;. In terms of the stream function we have
ik F(1- KT , ,
4,(DEN) = B [, HZBLBT (1) (ghoe—push)|
Rc O-I‘Rc
1 0 i ” 1 i 4
o | WG dy— g [ PO -2 .
¢ (2.48)
Finally, at O(k —k¢)?, we have
Win—5 W, = SlOI/V10+.S12M/i:l (2.49)
no slip on boundaries, J

where S, is given in appendix B. The solvability condition

1
[ T Suha+S,M) dy = 0 (2.50)
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now defines a,, which in terms of the streamfunction is given by

aanEN>=-fii@f@4~vo<w+ﬁ)[%”—¢*%*””]+ﬁﬁwl~ﬂ>@h¢m+¢o

vR, koo ko3 VR,

. ’ ’ . ’ ’ Gk ’ ’
-y {1[¢10”b — @10(un +ay)] —1p[ D1 Uy, — Do (Ub +ay)] — ;‘R‘E (P10 — 1D1o)

., Flup—2cr—a;) (1 —p) +k2 T (3up — 4¢r —ay)
+igyo Py

i Fl—p)+KT kT 3 ) ,
+l¢1 [(dl+€r)2 ( g-glljg)cRg +0’§R(2, (3ub—5cr—2a1)]__v_k_c (¢1_/"¢1)}
_fo 'ﬁ{gb -1 ”*4—ki—ik2(u +a;) —2ik20 | + ¢} [ﬂ +i

—d-1 10 Uy, vR, c\lUb T a c v LR, (up +ay)

2

6kc . . 4 2
+ ¢y [—;—R—c—lk00'~2lkc(ub +a1)] + @71 m—c} dy

1 srTm 4 . ' ” .
——pfo ‘I’{@m [——1Ub—R—kc—1k (Ub+a1)—21k3.0']+<1510 [%C:+1(Ub+al)]
2

+<I>1[——1—§:—1kecr 2ik (Ub+al)]+¢’ }dy (2.51)

The systems of O(1), O(k—k.), O(R—R.) and O(k —k.)? for the streamfunction formulation
are given in appendix B; the critical constants can also be derived from these systems by using
the adjoint relation (2.36), and this forms a useful check on the foregoing calculations.

2.8.8. Derivation of the amplitude equation

The governing equations and boundary conditions for the two-dimensional motion of two

superposed fluids are U=V=0 on y=1, )

oU oU oU opP o2U 02U

'5?+Ua +V6y T ox R (6x2+ay)

614 614 614 opP L L) 4

atVs Ty Tyt (6x2+ay)
CLEACLAN
ox oy

_ _ o, oy _ Oy
u=U, v=1", '6Z+ua—v, at+U =V,

277x§_;’+;5(1 )(g; gf;) M{%%V%(l—ﬂx)(%;] %Z)]

= t 2'
A e R
PR R Te) 5y~ e \oy T o) | T RE (1492}

B s [mm L, ()],
=PV TR RA Y )ay T=\3y " ox ) )’
Ou du ou 0% 0%
—a;+u—+v5§=—-a(pp)+(v) ( +a]/)
o v v 0 1 (0% 0%
atlam iy oy P+ OR) (ax2+5y"2)’
ou v '
ey ="
u=v=0 on y=-—d% )
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474 P.J. BLENNERHASSETT

The linear stability analysis of the preceding sections has shown that the basic flow becomes
unstable to travelling wave disturbances when R = R.. We now wish to examine the growth
of such waves, taking account of nonlinear and dispersive effects, in a region near R.. Thus
following S.S., we introduce the small parameter € such that

€ =d|R—R:|] as R-R (2.53)

and the scaled variables 7 and & given by
T = €t, (2.54q)
and £ = ed(x+ayt). (2.54b)

The equations of continuity in (2.52) are satisfied by introducing the streamfunctions A
and A for the upper and lower fluids. The velocities are then given by

oA and V=—% (2.55)

U=—5y_ ox’

with similar definitions for the lower fluid. Following S.S. we introduce the expansions

A= ¢y, & 1)+ (9, & 7) E+Po(y, &, 7) EX+cc]+.., (2.564)

where c.c. denotes complex conjugate, and where
E = exp [ike(x —e¢rt)]- (2.56b)

The functions in (2.564) are further expanded as follows:

bo(y, & 7) = f : updy +edos(y, & 7) + O(ek), (2.56¢)
iy, &, 7) = e2dyy(y5 &, 7) +eda(y, &, 7) +ebga(y, &, T)+... (2.56d)
and Pa(y, £, 7) = €y, £, 7) + O(el). (2.56¢)

The pressure and interface displacement are expanded as

p = Po(xs Y, g; T) +[p1(y: g: 7) E+p2(:l/: g’ 7) E2+C'C‘] +... (2’57)
and 7 = (&, 7) +[01(8, 7) E+0,(8, 7) E24c.c]+..., (2.58)
where  polo g, £7) = S cdp(E 1) +e | palus € 1) - o] + 06 (2.59)
and O0(E, 7) = O£, 7) +O(eh). (2.60)

The terms remaining in (2.57) and (2.58) are expanded as the corresponding terms in (2.56),
and for the streamfunction and pressure in the upper fluid we have expansions similar to (2.56)
and (2.57) respectively.

The expansions (2.56) are substituted into the equations of motion and like powers of eE
collected to give the equations governing the disturbance, the distortion of the mean flow, the
production of the second harmonic, and finally the distortion of the disturbance. However,
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as the interface conditions are applied on y = %(x, t), we must first express U, ¥V and P and
their derivatives as Taylor series about y = 0, keeping terms that are quadratic in #, before
using the expansions (2.56-60). The interface conditions for the different equations are then
obtained by collecting like powers of ¢E. The whole process of obtaining the interface conditions
involves some extremely lengthy algebra, and so only the results will be given. Thus at O(e}E)
we obtain the coupled Orr-Sommerfeld problem (where, as before, a prime denotes differen-
tiation with respect to y):

D, =9, =0 on y=1,

L(ke, @yy) = ike(Ub—cr) (D], — k2 Dyy) —ike Uy Byy — RGH P — 28305, + k5 Dyy) = 0,

¢11 = @11;
P —UpPr/0r = Dy —Up Dyy/or, ¢4, +Eobyy = u(P, + kD),
q(ke, P11) = (VRe)™ (p11—3ke 1) +ike(bryup, — p1107) on y =0} (2.61)

+ikey (F+k2T) /o R2

= p[R3Y (D11 — 3K D11) +ike(Pyy Uy — D1y 0x) +ike Dy F/ o RE]

= pQ(ke, P1), .

Uke, $11) = ike(up —cr) (P11 —ke@1y) —ikeuy @ — (VRe)™ ( V) — 28381, +hehu) = O
$u=¢n=0 on y=—d7, /

which is just (2.19) with R = R¢, £ = k¢ and ¢ = ¢r. The solution of (2.61) is written as

By = Alr, ) P, |
b = A(7, £) ¥1(9), |

where the eigenfunctions are normalized to unity at y = 0 and A(7, £) is the amplitude
function to be determined.

At this stage it is convenient to introduce a notation to simplify the ensuing equations; the
shorthand form is based on the close similarity of expressions, for the same quantity, in both
the lower and upper fluids. Thus the expression

(2.62)

Q(ke, Dyq) = [q(ke, 13):lc. > uc.;v—>1; T 0] (2.63)

means that Q(kc, @,,) is given by taking the expression for ¢(kc, ¢,,) and turning the lower
case dependent variables (e.g. @) into upper case dependent variables (e.g. @), setting
v = 1 and T = 0. The shorthand will also be used to simplify interface conditions. Thus

¢"+k2¢ = p{lhs.:lc. > u.c), (2.64)

where L.h.s. means ‘left-hand side’, is equivalent to the third interface condition in (2.61).
Before proceeding we given the following definitions:

& = —y(0)/or = —¥1(0)/0x;
= ¥1(0) + & up(0)

and Uy, = (ugq:lc. > uc.); (2.65)
ikeppis = (K&/vRe) [Y1(0) —k391(0)] —ikior 9y (0)
and ikePy, = (ikeppiy:lic. > uc; v —>1).

46 Vol. 298. A
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476 P.J. BLENNERHASSETT

The distortion of the mean flow is governed by the system occurring at O(¢E®), which is

Dy = Dy =0 on y =1,
RO = ikclAlz(glizfll_lpl @i)”’
Boo+ 1 §1|4]2 = (Lhs.:le. - u.c.),

Poz — ub¢02+|A|2{”b|§1|2 ( iy &+ 91 8) +[§1¢1+CC]}

Up+a

/

= (Lh.s.:lc. >u.c.),
Boz — VReiko|A|2 (Jy i — ¥ ¥ry) = p(lhs.:le. - uc; v — 1),
(VRe)™ pop —ike|A|2 (Fy ¥y — ¥ 7)) = p(Lhus.ilc. > u.c; v > 1), ]
(VRe)™ $i = kel |2 (V191 — 1 ¥1)",
Por = P2 =0 on y=—d7,

on y =

(2.66)

where a tilde denotes the complex conjugate. Care must be taken when solving (2.66), as we
see that the homogeneous form of (2.66) is identical to the eigenvalue problem (2.21) for long

waves, with — g, taking the place of ¢,. Thus when the group velocity of the disturbance is not

equal to the phase speed of long waves, (2.66) has a unique solution of the form

Dye = F(y) |43
’ Po = f(y) 4],
where s = [* st dy+ (g+d2 g+
with () = ikorRe [ (50—
and F) = [ St dy+ - 1)* (By+0)
with S(y) = ikeRe f 1” (7T, —w, ) dy.

The constants B, C, b and ¢ are found by enforcing the interface conditions.
At O(eE?) we obtain the system governing the second harmonic, namely

Dyy = Dy =0 on y =1,
L(2kc: ¢22) = ikcAz(Tl Tiﬂ_ S-I,i lp’{)s
¢22+l€17ﬁ1A2 = (Lhs.:lc. = u.c.),
Pha = Up Pao/ 0r + A2 L1 Y1 — Jup, &y (wyy + Y1) + 244, {3] = (Lhss.:le.>uc),
Gt 42 g - 2L [Y4 (8K + VReikes) — vRoikoyry (uh + (F+ KT) o R2)]
= u(lhs.:lc. »uc;v—>1; T = 0),

0(2ke, o)+ 42 [~y ) + Ll I LR T)

S 4Ry
+ §1(2lkcppn—“;’]%”
= p[lh.s.: (ikeppr) = (1kePyy); L. > uc; v —>1; T — 0] ]

[(2ke, Pon) = ikc A*(Yry¥ri — Y1 ¥Y),
Pos = Ppe = 0 on y =—d"

on y =

(2.67)

(2.68)
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The solution to (2.68) can be written as

¢22 = Aijzsl

2.69
¢22 = AZ?ﬁz:J ( )

where we have assumed that the solution is unique.

The O(eE) system is essentially the non-homogeneous system (B 5) obtained at O(k—kc)
when defining a,. As @, is chosen so that (B 5) has a solution, then a solution of the O(¢E)
system exists for @,, and ¢,,. The modifications to (B 5) needed to obtain the O(eE) system
are: @, and ¢,, are replaced by @,, and ¢,, while all the non-homogeneous terms are multi-
plied by (—104/0£) and @, and ¢, are replaced by the normalized eigenfunctions ¥, and ;.
Thus the solution of the O(eE) system is

Py = —i(04/08) ¥+ 4, ¥15)

. (2.70)
12 = —1(BA/0E) Yryg+ Aoy, |

where ¥}, and ¥, are solutions of (B 5) when the forcing terms contain the normalized eigen-
functions and 4, is an arbitrary function of 7 and §.
Finally, at O(e2E), we have the system of equations

Dy =DP;=0 on y=1,

024 o4 ” AP —282W, + AP
L(kc, ¢13) = (42 agz a ) (W _kZSZI) ( s derzl 1)
- ‘“‘{'}—5?{'}+A|A|ZG

P13 —A|A4|v = Py —A|4]2Y, 1
’ _“{)¢13 azA__aé) iy Yy
P1a o T (a2 o0& or /cca'2

—i=g {'}_é_g? {-}+4|4] [¢+— (Kl)]

= (Lhs.: K, » K5 Le. > u.c.; w > %),
BstkiPs—i %{'}—62—2-{-}-%14[14[24—— (Lhs.:g—>8;Le. »uc), | % Y7 0) (2.71)
24 o4 F+r:ET 024 o4
q(k03 ¢13)+(a2'é—g—2_-a,-) [%1 ¢1( 0'2R3 )]—ggz—{~}— ———2{.}
2
+o Ak (ub'ﬁl oy — ¢1F+k T)+4¢A|Al2
di R

= p(Lhs.:we—> A" le > UC; T — 0),]
_ 024 04 " AP — 2R3 + k2 )
ke 0) = (o0 50— 57) (W Ry ~ L= HES
- ‘—{°}—§§‘5{'}+A|A|2
$13=¢13=0 on y=-d

46-2
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478 P.J. BLENNERHASSETT

In (2.71) the unstated coefficients {-}of —104,/0& are given by the non-homogeneous terms
in (B 5), with the normalized eigenfunction replacing ¢, and @;. Similarly, the unstated
coefficients of —024/0£% are given by the non-homogeneous terms in (B 7) with ¢; and @,
replaced by ¥, and ¥, respectively, and with ¢,y and @), replaced by ¢;, and ¥, respectively.

For (2.71) to have a solution the non-homogeneous terms must be orthogonal to the adjoint
function, and thus the solvability condition leads to the amplitude equation

04 24 _ 4

g 2
3y —mgp = g A+l (2.72)

where a, and d, are given by (2.51) and (2.48) respectively. The coefficient of the nonlinear
term is given by
K(CDEN) = y(p N =) = (S —8) vRe
+ (=) {lun (Y +keyp) [ or— (" =3k ')] [ vRe +ikeor ' —ike Y (F+ kg T) /o RS}
’ ’ ” 2 0 1
+ (UbK“+%-—ubKl~¢) W'+ ko) +f . Yg(y) dy +pf0 YG(y) dy. (2.73)

Or oy vR, -

This definition of « has the same form as the definitions of the critical constants, with terms
due to the motion in the bulk of the fluid and contributions from (nonlinear) effects at the
interface. Equation (2.72) is the amplitude equation we set out to derive, and so the pertur-
bation expansion is not continued any further; the rest of this section is devoted to defining
the coefficients of the nonlinear terms in (2.71).

The coefficients of the nonlinear terms in the equations of motion are given by

8(y) = Ua(P— k) + 20 (1 — k) — 205 (V5 — 4k39)
~ (s — 4kEYL) —f (1= Keby) +f "Y1 (2.740)

and Gly) = (g(y):l.c. > u.c.). (2.745)
For convenience we introduce the following quantities, where all the functions are evaluated
aty = 0:
& = —n/or = =¥ /om,
Uy = Yr+un
Goo = —[f(0) +iy &+ gl]/(ub +ay), (2.75)
oy = f'(0) +up, §oa+ (&7 +cc) +up| &% .
oo = = [Va+ 56 (un +¥1)] /0y
and Ugy = Ya+up oo+ E 7+ By £

Thus in the first interface condition, which expresses continuity of vertical velocity, we have
v =—€02¢1+§22‘ﬁ1"2§1¢é“ &2 +3y182 (2.76a)
and v = (v:lc. > u.c.). (2.768)
From the kinematic condition we find that
Ky = v—(ups§; —use & + 2y, £o) (2.77a)

(Ky:v—>79"). (2.77b)

and K,
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In the interface condition expressing continuity of horizontal velocity we have

w = a1+ G+ G+ Lvs + YT G2 + un (8o G+ Goe &) +391 &3

and U = («:l.c. > u.c.).

For the shear stress condition we introduce the following interfacial quantities:

' = Lo ¥l + Coa W1 + G (" + YV &+ 3V &) + LYy s

U = («":lc. >u.c.);
/x5 = ooty + §22J1+4€1¢§+¢’{|§112+l
oV ( o )
:l.c. > u.c.

and iy \oag

Thus the coefficients of the nonlinear terms in the shear stress condition are

8 = &' +k00 [y — 4R [G( L1 —cc) + 280 Y1 + G (295 + EiY7)]

and S = \s:4 - U, av_)aV lc—>uc)
Oxyy  Oxyg’

479

(2.784a)
(2.780)

(2.79)

(2.804a)

(2.805)

The viscous contributions to the normal stress condition requires the following quantities:

v1s = — Cpa Y1+ §2215"—2§~1¢§ '/’”|§112 m $ Viz = (v3; Le. > u.c.);
Top = f" +up Lo + [§ P +c.c.] +k2[§11ﬁ1+c c.]; Tpe = (Tpe:lc. >u.c.);

T = Yi+u i +R Y Ty = (Taile > ue);

Tay = Yot up Lo+ G YT + 4RV + k25 Y15 Top = (7225 L. —uc.);
RSP G2+ 2T L3+ ke — §iTor — 28ee Tua + Ci 7o)

and ¥ 3 = (vy5; lc. > uc).

Vi3

The contribution of the pressure to the normal stress condition is given by

ikeppns = Loo(ikepPia) +ike &1 (pPo2) — Can(ikepPly)

+ 381 (2ikcpPss) + | &1|2(kepPl) — 83 (ke pP],)

and  kcPyy = (ikeppyz:l.c. > uc;p—> 1),
where ikeppyy = (Y1 —keyhy) / VR +ike(un ¥y — o ¥y),
ke Pyy = (
ikePyy = (ikeppriilic. >u.c; v—>1), ikepply = ki(ikcpPrs —2ikcup ),
ik Py = (ikeppip:lic. >u.c.), pPos = —2k2(Y1 ¥, +c.c.),
Py, = (pPos:l.c. > u.c.), 2ikcppy, = 4k2(Y5 —4k2Yrs) VR — 8ik3or 1),
and  2ikc Py, = (2ikcppsy:l.c. > uc; v — 1),

ikeppqyilc. >u.c; v—>1), ikoppyy = K2(Y1—k2y,) /vR.—ikS o i)y

(2.81)

(2.82)

Thus by using (2.77), (2.81) and (2.82) the coefficients of the nonlinear terms in the pressure

condition are given by

n = ike(—f"Y1— V1V +f Y1+ 20— i) —ike(Ka) (F+AT) /or RE+2k2035/ VR,

tikeping — 2ikevig/VRe + 3 TikS &) &y |2/2R?

and

N = (n: Ky~ Kg; ikeppng = ikePra; V13 > Vigs V13> Y 135 v > 1; T = 0; le > UC).

(2.834q)

(2.835)
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3. RESULTS AND DISCUSSION

The analysis of the preceding sections has shown that the amplitude of disturbances to the
basic flow is governed by
04 024 4,
a—T'—aza—g‘z‘ = Z;A-{-KA[AP,R > R., (3.1)
where the constant coefficients are defined in §2.3. The main object of this work has been to
obtain numerical values for these constants. For a given basic flow this has involved the accurate
determination of the critical conditions for linear stability, and then the numerical solution

of the systems (2.35), (B 5), (2.61), (2.66) and (2.68). In developing the programs to perform

TABLE 7. CONSTANTS FOR NONLINEAR ANALYSIS FROM P.P.F. PROFILE

k, R, k. c, ay, d, a, K
3.6 380.6 1.818 0.711 —0.667 (0.895E—5, 0.217E-2) (0.136E—2, —0.157E-2) (—29.7, 237.9)
7.3 4453 2.543 1.17  —0.896 (0.764E—5, 0.513E—2) (0.134E—1, —0.273E—1) (—1.95, —3271)
14.6 7807 3.750 1.45 —0.973 (0.200E—4, 0.552E—2) (0.317E—2, —0.240E—1)  (1.50, — 5581)
29.2 1835 4.043 1.62 —1.01 (0.364E—5, 0.294E—2) (0.111E—2, —0.384E—1) (7.9, —6053)
58.4 4263  4.627 1.80 —1.1  (0.12E—5, 0.16E—2)  (0.50E—3, —0.40E—1)  (—23 —7973)
Computations were performed on a uniform mesh with a step length of 1/450.
TABLE 8. CONSTANTS FOR NONLINEAR ANALYSIS FROM B.L.1 PROFILE
k, R, ke, ¢ ay, d, a, K

3.6  580.9 1.416 0.406 —0.367 (0.404E—5, 0.742E—3) (0.557E—3, —0.170E—1) (—9.95, 912.3)
7.3 1341 1.750 0.443 —0.350 (0.110E—5, 0.446E—3) (0.337E—3, —0.327E—1) (—8.15, 827.1)
14.6 1142 1.959 1.17 —0.762 (0.223E—5, 0.183E—2) (0.739E—3, —0.115E0)  (—3.82, —335.9)
29.2 2330 2.250 1.49 —0.898 (0.837E—6, 0.134E—2) (0.526E—3, —0.125E0)  (—1.5, —479)
58.4 5173 2.643 1.74 —0.99 (0.30E—6, 0.84E—3)  (0.29E—3, —0.11E0) (—0.96, —792)
116.7 12276 2.944 1.96 —11  (0.92F—7, 0.44E—3)  (0.13E—3, —0.10E0) (—17.1, —1042)

Computations were performed on a uniform mesh with a step length of 1/450,
except for &, = 58.4 and 116.7 where the step length was 1/800.

TABLE 9. CONSTANTS FOR NONLINEAR ANALYSIS FROM B.L.2 PROFILE

k R k, ¢ ay, dy a, K

3.6 2698 0.8746 1.18 —0.958 (0.554E—5, 0.275E—2) (0.165E—2, —0.159E0)  (—0.221, 20.61)
7.3 2939 1.365 2.15 —1.41 (0.196E—4, 0.835E—2) (0.209E—2, —0.187E0)  (—1.02, 305.3)
14.6 6747 1.544 242 —1.49 (0.453E—5, 0.472E—2) (0.104E—2, —0.19850)  (~—0.81, 923.8)
29.2 1582  1.844 2.64 —1.56 (0.148E—5, 0.265E—2) (0.470E—3, —0.170E0) (—4.1, 1137)
58.4 3852 2201 279 —1.6  (0.46E—6, 0.14E—2)  (0.20E—3, —0.14E0) (0.8, —8652)

(a) For the air: for k£, = 3.6, 7.3 and 14.6 the computations were performed with a step length of 1/450;
for k, = 29.2 a step length of 1/800 was used and for £, = 58.4 a step length of 1 /1000 was used.
(b) For the water: the step length was twice the step length for the air.

TABLE 10. CONSTANTS FOR NONLINEAR ANALYSIS FROM p.C.F. PROFILE

k, R, k, c, ay, d, a, K

365 849.4 1.500 2.56 —0.224 (0.222E—5, 0.376E—3) (0.420E—3, —0.110E—1) (—19.2, 1142)
14.6 5650  2.280 250 —0.174 (0.147E—6, 0.817TE—4) (0.942E—4, —0.153E—~1) (—16.5, 995)

Computations were performed on a uniform mesh with a step length of 1/450.
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these calculations care was taken to compare our results with independent calculations on
problems that are special cases of the flows studied here. In this way the integral contributions
to all the coefficients were checked. As a,, a, and d; are properties of the linear stability problem,
numerical values for these constants obtained from the definitions in §2.3.2 could be checked
by numerical differentiation about the critical conditions. Further details of these checks are
given in appendix A.

One part of the calculation that could not be checked by comparison with published work
was the contribution of the interface terms to the value of x. Here there are two possible sources
of error: algebraic mistakes in the derivation of the interface conditions and errors in program-
ming the relevant systems. The former category of error was eliminated by several independent
manual derivations of the interface conditions and finally a computer algebra program was
written to derive them. The results of the computer algebra program confirmed the manually
obtained results and thus we are confident that the interface conditions and definition of «
are free of algebraic errors. Errors in coding the systems of equations are harder to eliminate.
Here, repeated programming of each interface condition was used : each time a slightly different
algebraic form for the condition was used and checked to make sure that the results had not
changed. Thus we are also confident that the numerical values of « given by the program
suffer only from the truncation error inherent in the numerical solution of the equations. Tables
7-10 give the results for the profiles studied for a range of values of 45; the values of a;, d,, a,
and « are believed to be accurate to the number of figures quoted.

From the results we see that in general R. increased as ks increased and hence the eigen-
function tended to develop thin viscous layers (see figure 8). This necessitated the use of a very
fine mesh to calculate the critical conditions accurately. The fine mesh adequately resolved
the viscous layers but was very inefficient over the rest of the flow domain and eventually lead
to storage problems in the computer which limited the range of ks that could be studied. Clearly
a variable grid or adaptive method of solving the governing equations would be an improve-
ment on the O(A%) uniform mesh technique used here.

The accuracy of the results was checked by repeating several typical calculations on finer
meshes so that the number of significant figures in the results could be estimated. This tech-
nique worked well for the smaller values of £, but at the larger values of ks storage limitations
prevented any significant refinement of mesh and hence the accuracy of the results at large £
is less certain.

An unexpected source of error arose during the calculation of x. The numerical compu-
tations were performed so that the contribution of the bulk of the fluid (i.e. the integral terms
in 2.73) to the value of « could be isolated from the interface effects. In almost all situations
the integrals gave a positive contribution to v, as is to be expected from the results for plane
Poiseuille flow, while the interface terms gave a negative contribution to «; of the same order
of magnitude as the integral terms. Thus, &, is the difference of two nearly equal quantities
and consequently many significant figures in xr were lost.

For the profiles b.l.1, b.1.2 and p.C.f. we see that « is almost always negative, and hence
nonlinear effects tend to decrease the rate of wave growth. Also, when «; < 0 equilibrium
amplitude solutions of (3.1) are possible. For the p.P.f. profile «; takes both positive and
negative values and hence nonlinear effects either increase or decrease the growth rate. However,
as this profile has little similarity to experimental or oceanic wind wave generation we shall not
discuss it further.
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For «;r < 0 the unmodulated, i.e. independent of §, equilibrium amplitude solution of 3.1 is

4= (-_—1:)-% exp [iT (j—iu(—_fm)] (3.2)

Here we see that as well as providing the means of establishing an equilibrium amplitude
solution, the nonlinear effects have also changed the frequency of the travelling wave via the
ki/(—k:) term in (3.2). The dy;/d;, term represents a linear effect and gives the change in
frequency of the disturbance due to the increase of R above R.. The importance of non-
linearity can be seen more clearly by examining the interfacial displacement of the equilibrium
wind waves and comparing it to the surface displacement of a classical nonlinear Stokes wave-
train. Such a comparison has been made experimentally by Lake & Yuen (1978), while we
are in a position to make theoretical comparisons.

Ficure 8 (a). Eigenfunction at critical conditions for b.L.1 profile with £, = 29.2.

—1
Ficure 8 (). Adjoint function at critical conditions for b.l.1 profile with £, = 29.2.
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Lake & Yuen (1978) made experimental comparisons between wind-driven waves (under
steady wind conditions and at fixed fetch) and mechanically generated nonlinear Stokes waves,
and found many similarities in energy spectra, zero-crossing frequency and other properties
of the two wave trains. This lead them to conclude that wind waves behave as a nonlinear
wave train; our analysis strengthens this view as the equation governing the growth of disturb-
ances, (3.1), is similar to the nonlinear Schrodinger equation which governs Stokes waves.
However, experimentally generated wind waves contain frequency components not occurring
in our calculations, and so it is not possible to use our results to support the conclusion that
wind waves, in practice, form a non-dispersive, nonlinear wave train.

__]‘ ~ From (2.58) and (2.65) the leading-order surface displacement is
<
> > 7 = e[(—A)ox) E+c.c],
olm
=
Q) y
L O
w 1
=
<z
=0
I; J
a5,
250 ¥, B
=%
= ~16 ' 0 ' 16 ' 32

%

2r
—1-

F1cure 8(¢). Second harmonic at critical conditions for b.l.1 profile with &, = 29.2.
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Ficure 8(d). Distortion of the mean flow at critical conditions for profile b.l.1 with &, = 29.2.
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which becomes .
_ 2% e KL
7 = —x)to cos [/cc(x cet) + =) et-}—dlr et] (3.3)

when (3.2) is used to eliminate 4. To compare (3.3) with the nonlinear Stokes wave (on
infinitely deep water) we introduce the quantities

B 26} K0} _ dyk, 08
a= —0'——1'(‘—Kr)%’ a = _—2kgcr’ and g = d___uélkﬁcr' (3.4)
The equilibrium amplitude wind wave given by (3.3) is now
Nw = acos [kex —keert(1+ Ja(ake)?+ flake)?)]. (3.5)

Values for a and £ for the b.l.1 and b.1.2 profiles when «; < 0 are given in table 11. We note
that the change in frequency due to linear effects is given by the constant g, so that when
comparing (3.5) with finite amplitude Stokes waves, attention will be focused on the value of a.

TaABLE 11. PROPERTIES OF EQUILIBRIUM AMPLITUDE SOLUTIONS

b.l.1 b.l.2
o A Y « A Y
a £ stability kq a ) stability
—30.91 —30.9 stable 3.6 —17.95 —21.2 stable
—17.45 —34.9 stable 7.3 —85.6 —60.9 stable
20.8 —-97.0 unstable 14.6 —211 —96.7 stable
26.2 —66.6 unstable 29.2 —172 — 553 stable
32.1 —54.7 unstable 58.4
35.0 — 574 unstable 116.7

The leading-order surface displacement in a Stokes wave is
Ns = a cos [kx —ket(1+ % (ak)?)], (3.6)
where, for infinitesimal waves on an infinitely deep inviscid fluid, the phase speed ¢ is given by

¢t = g/k.

As noted in the discussion of the linear stability results, ¢r is not given by the dispersion relation
for infinitesimal, inviscid surface waves. However, here we are interested in comparing the
magnitude of the change in the two phase speeds due to nonlinear effects.

From table 11 we see that o ~ 0(20) for b.l.1 and « ~ 0(100) for b.l.2, and hence that the
change in phase speed of a wind wave is much greater than that occurring in a Stokes wave
of the same wavenumber and amplitude. (Note that the change in phase speed is }x(ak)?, so
that despite the large values of «, the nonlinear effects are still small perturbations in the limit
ak — 0.) This relatively large effect is slightly surprising as it is usually assumed that, owing to
the small value of p,i;/Pwaters the motion of the air and water can be decoupled and hence
the air will have only a small effect on the properties of the wave. Also, in the definition of «,
(2.73), the integral contribution from the air is multiplied by p, and hence we might expect
this term to be much smaller than the integral contribution from the water. That these expec-
tations are unfounded can easily be seen by examining the magnitudes of both the integrands,
as defined by (2.74), and recalling that, owing to the presence of the critical layer, the largest
velocities and velocity gradients occur in the air. Figure 8 shows the various functions involved


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY :

PHILOSOPHICAL
TRANSACTIONS
OF

—%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON THE GENERATION OF WAVES BY WIND 485

for the case of b.l.1 and ks = 29.2, and it is clear that the magnitude of the nonlinear terms
will be much larger for the air than for the water. Thus, from these results we conclude that
for a nonlinear analysis of wave growth it is necessary to treat the air and water motion as a
coupled problem.

Our results do not provide a definitive statement on the direction of the change in phase
speed, as for b.l.1 « changes sign, while for b.l.2 a is always negative. Positive values of a
indicate that nonlinear effects lead to increased phase speed, as is the case for Stokes waves
on an infinitely deep fluid, while negative « means finite amplitude waves travel more slowly
than infinitesimal waves. The negative values for o are not surprising when we compare our
results to those for waves on a finite depth of inviscid fluid. For this latter case it is known (see
Whitham 1974, p. 562) that when the (dimensional) wavenumber multiplied by the (dimen-
sional) depth of the fluid is less than 1.36, finite amplitude waves travel more slowly than
infinitesimal waves. In our non-dimensional notation this condition becomes

k/d < 1.36, nonlinearity reduces phase speed,
and k/d > 1.36, nonlinearity increases phase speed.

In b.l.1 &« changes sign when k/d ~ 1.8, while in b.1.2 « is negative for values of £/d up to 3.6.
These results agree qualitatively with the results for waves on an inviscid fluid, and considering
that our analysis has assumed a different basic flow and included nonlinear processes in the
air, the agreement is seen to be quite good.

Closely associated with the effect of nonlinearity on the phase speed is the question of the
stability of these equilibrium amplitude solutions. For waves on a finite depth of inviscid fluid
it is known that unmodulated finite amplitude waves are stable for £/d < 1.36 and unstable
“for k/d > 1.36 (Whitham 1974, p. 562). The stability of unmodulated equilibrium amplitude
solutions of (8.1) has been examined by Stuart & Di Prima (1978). When their stability
criteria are applied to our situation, (case I of table 2 in Stuart & Di Prima applies) results
analogous to the case of inviscid waves are obtained. For b.l.2 where & < 0 for all ks (with
kr > 0), the waves are stable, while in b.1.1 they are stable for « < 0 and unstable for « > 0.
So far we have discussed only those conditions for which kr < 0. Positive values for «, i.e.
increased growth rate with increasing amplitude of the disturbance, were obtained in the p.P.f.
profile for ks = 14.6 and ks = 29.2 and for b.l.2 with ks = 58.4. We are reasonably confident
that the positive « for the p.P.f. profile are correct. However, this profile is not really relevant
to wind generation of waves in natural conditions. For the b.1.2 profile there is less certainty
about the positive value for «r as these calculations were quite difficult to check. It is possible
that given better resolution of the interfacial layers, the positive contribution to «r from the
bulk of the fluid would be overcome by the negative contribution to «r from the interfacial
effects. Clearly more calculations need to be performed for the b.1. profiles to see if «r is always
negative. N ’

Finally, we conclude the report with a brief summary of our main results.

(a) A linear instability mechanism can generate surface waves in the laminar flow of air
over water, i.e. turbulence is not necessary for the generation of surface waves.

(b) The waves first produced by the instability mechanism are much longer than the waves
usually generated experimentally, and they are initiated at much lower friction velocities than
the experimentally observed waves.

47-2
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(¢) The growth of finite amplitude wind-waves is governed by a nonlinear equation similar
to the nonlinear Schrédinger equation, and hence wind-waves and Stokes waves have several
qualitative similarities.

(d) In the velocity profiles used to model a boundary layer flow of air over water, the
numerical results indicated that nonlinear effects reduce the growth rate of surface waves, and
hence give rise to equilibrium amplitude waves.

(¢) The effect of nonlinearity on the phase speed of the wind-waves was much greater than
the corresponding effect on Stokes waves. Thus it was concluded that nonlinear effects in the
air can be as large, or larger than, nonlinear interactions in the water, and hence that it is not
possible to decouple the motion in the air and the water when examining finite amplitude
wind-waves.

TABLE 12. SOME PROPERTIES OF THE BASIC FLOW PROFILES

p.P.f b.l.1 b.1.2 p.C.f.
U, 1 0.2704 0.3453 0
U,(1) 0 2.831 3.601 3.881
Un. 2.656 2.831 3.601 —
Ym 0.4846 1 1 —
U,(0) 0.3071 0.1265 0.3994 0.0596
dU,/dy|,_ 9.694 5.409 6.404 3.821

Us b

Ym
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APPENDIX A

The eigenvalue problem (2.61) and its adjoint (2.35), and the non-homogeneous system
(2.68) and (B 5) are special cases of the general fourth-order boundary value problem

D=9 =0 on y=1,
DM +C(y) " +D(y) P+2E(y) 9 = F(y), 0<y <1,

3 3
> FLyw¢®+FLNH; = ¥ FU,,®»+FUNH,, y =0, n=.1,2,3, 4, (A1)
p=0 »=0

¢ +c(y) " +d(y) p+2¢(y) ' = f(y), —d1<y<0
¢p=¢ =0 on y=-—d7

Thus it is sufficient to describe the numerical solution of the system (A 1).

The numerical solution to (A 1) was obtained by a finite difference scheme similar to that
used by Osborne (1967). As the governing equations do not contain any third derivatives a
Numerov transformation can be used to increase the accuracy of the solution. Thus, on a
uniform mesh with step length % we introduce the auxiliary functions G and g such that

D = (14402 —+350%) G for the upper ﬁuid,l
A2
and ¢ = (1+302—+550%) g for the lower ﬂuid.J (A2)
Here 8 is the usual central difference operator. In terms of the auxiliary functions we obtain
the following approximate formulae for the derivatives of ¢:

h4¢(iv) = 64g + 0(810) s

R = (+ g% g+ O(9), (43)
and h¢' = puog+ 0(85).
The constant step size £ is given by h=y—y; (A 4)

47-3
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and g is the averaging operator. Thus our finite difference approximations have a truncation
error which is O(h*) and involve the values of ¢ at no more than five mesh points.
The interface conditions in (A 1) involve the third derivative of the solution, and so special

‘care must be taken to maintain O(h%) accuracy. Again we follow Osborne (1967) and note

that ¢” can be written as
" = u8(1 4§00~ 7kod") ™ § - Shd (1) + O(8).
Thus, using (A 2) and the appropriate equation of motion from (A 1) we obtain
W = p8g—liud(fcd” — dp —2e¢") + 0(8),

which simplifies to
BB¢" = ud3g+ J:h*ud(c62g + h2dg + h2eudg — h2f),

(A5)

and hence we have maintained O(A*) accuracy and a five point formula for the third derivative.

Ficure Al. Form of the finite difference equations; x indicates a non-zero element.

The substitution of (A 3) into the governing equations in (A 1) yields the finite difference

approximation to the equations:

Ay 8jot Ay i+ Ay G+ Ay 8ioa+ 5 e = Y,
Ay = — 4+ 3hi; + Yid, — e,
and o = 6— §h%; + 3h%d;.

where

The subscript j means that the function concerned is evaluated at y = y;. (Note that an
analogous form of difference equation is obtained for the upper fluid.) The equation (A 6)

Ay = s = 1+ 8%,
Ay = Ay+2h3e;,

= - - - —
xaxx Gy ]
X XX X
xX'xx x x
X xXxxx
\\ F
\ ,
XX x x.x G,
XX xXxx G,
X XX XX G,
X X XXX X X XXX G_,
X X XX X X x XX X G_;
X X XxXx X XX XXxXx g3 ="
X XX XX XX xx x 2.,
XX xx g
X X X XX £
X Xxxx £
N 82
Ji
AN
XX xx x
X X Xxxx
X x xx
L x X X ;_.SNL.J L -
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involves the values of g at five mesh points centred on y = y;, so that when (A 6) is to be
applied near the boundary y = —d-! or the interface y = 0, the mesh must be extended out of
the flow domain ( —d~1, 0) to retain the central difference formulae (A 3). Sufficient equations
to find the values of the auxiliary functions at the points outside the flow domain are provided
by the boundary conditions and interface conditions in (A 1). To solve (2.61), (2.35) and (B 5)
only two fictitious points on each side of the flow domain were needed. However to retain O (/%)
accuracy in the O(eE?) system (2.68), it was necessary to have the value of the eigenfunction
at an additional point on either side of the flow region. These extra values for the auxiliary
function were found by applying (A 6) at the first mesh point outside the flow domain. Thus
the resulfing system“ of algebraic equations for the auxillary function has the form shown
schematically in figure Al.

TaBLE Al. VALUES OF ¢ FOR NO BASIC FLOW

Fluid properties: air over water, see table 1.
Geometry: d = 1; k, = 3.65.
Wavenumber: £ = 3.

analytical solution numerical solution
o ¢ step length
(160.468, —0.516379) (160.468, —0.516423) 1/200
(160.468, —0.517087) 17100
(0, —0.675288) (0, —0.675290) 1/100
(0, —1.70226) (0, —1.70227) 1/100

The equations were solved by using Gaussian elimination without pivoting, with the elimi-
nation commencing at the top left and bottom right elements of the coefficient matrix and
working towards the region of the interface conditions. For the eigenvalue problems (2.61)
and (2.35) the Fj and f; are identically zero and we have a homogeneous system of equations
for the auxiliary functions. The eigenvalue ¢ was found by regarding the determinant of the
coefficient matrix as an analytic function of ¢, and by using Muller’s method to locate the
values of ¢ for which the matrix is singular. The auxiliary function was then found from back
substitution, after an arbitrary normalization condition had been imposed. For the non-
homogeneous system (B 5) the coefficient matrix was singular, but a solution could be found by
using the value of ¢, that made the forcing terms satisfy the appropriate orthogonality condition.
In the non-homogeneous system (2.68) the coefficient matrix was non-singular and a unique
solution could be obtained.

The integrations required in the definitions of the constants a,, a,, d, and « were performed
by using Simpson’s rule. However in the calculation of the distortion of the mean flow it was
necessary to use a more elaborate integration scheme. From (2.67) it can be seen that ¢,, and
@y, are given by a double integral of the Reynolds stress terms. For any given value of y; an
even number of mesh points could not be guaranteed and hence Simpson’s rule could not be
used. Instead, cubic spline interpolation of the integrand was used and the integrals evaluated
from the interpolating spline. This scheme retained the O(4%) accuracy of the calculations.

As mentioned in this paper tests were carried out during the development of computer
programs to check with previously published results for special cases of our problem. The first
tests carried out were those comparing the results of the analytical solution of §2.1.2 with
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the results of the numerical solution of (2.29). For computational purposes (2.29) could be
obtained from the appropriate form of (A 1) (namely (2.19)) by setting R = 1 and Up(y) = 0.
Some typical results obtained from the two methods of solution are given in table A1.We note
that for the conditions given in table A1 the speed of surface waves, on the assumption that the
air and water are inviscid fluids, is 160.5 cm s, correct to four significant figures.

For the purely imaginary eigenvalues the agreement between the two methods of solution is
excellent, while for the travelling wave disturbances we have good agreement between the
results. We see that to calculate the damping of the wave quite a fine mesh is needed to obtain
four figure accuracy. However, in the computations to find neutrally stable conditions we
only need to know the order of magnitude of the damping, and so a relatively coarse mesh will
suffice.

TaABLE A2. CRITICAL CONDITION FOR PLANE POISEUILLE FLOW

from Davey, Hocking numerical solution

& Stewartson (1974)  with step length of 1/200
R, 3848.14 3848.23
k. 1.02055 1.02057
c, 0.396 0.396000

TABLE A3. THE LONG-WAVE INSTABILITY

analytical solution numerical solution (k= 10"
profile F/R? . F/R? A k,
b.l.1 0.1164 0.3991 0.1165 0.3991 3.65
0.1169 0.3983 14.2
b.l.2 0.9778 1.578 0.9782 1.577 3.65

TaABLE A4. CONSTANTS FOR NONLINEAR ANALYSIS OF PLANE POISEUILLE FLOW
OF A HOMOGENEOUS FLUID

from Davey, Hocking numerical solution

& Stewartson (1974) with step length of 1/200
ay —0.575 —0.575
a, (0.280, 0.0412) (0.280, 0.0412)
4, (0.379, 1.83) x 10 (0.379, 1.83) x 10-5
K (20.5, —115.6) (20.6, —115.2)

The next special case of (2.19) that was examined was the plane Poiseuille flow of a homo-
geneous fluid; this case is obtained by setting v = p = d = 1 and 7 = 0 in (2.19). In table
A2 the results of our numerical solution are compared with the results given in Davey et al.
(1974) (with allowance being made for the different scalings). The agreement is again good,
the difference between the results being less than one unit in the fifth figure.

The final check on the program to solve (2.19) was provided by the long-wave length
instability given in §2.1.1. Typical results from the analytical and numerical solutions are
given in table A3, and the agreement is seen to be good.

Thus the program designed to solve the system (2.19) (or (2.61)) passed all the tests available,
and so we can be reasonably confident of its accuracy. The adjoint system (2.35) is easily
checked by requiring its eigenvalues to be the same as those of (2.61). The systems (B 5), (B 6)
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and (B 7) which define the coefficients a,, 4, and a, respectively have the same operator as the
eigenvalue problem and hence only the non-homogeneous terms need be checked. The check
on the correct programming of the non-homogeneous system (2.68) and the integrations
involved in (2.67) was provided by the results given in Davey ef al. (1974) for plane Poiseuille
flow of a homogeneous fluid. The results are given in table A4.

Another check on the whole program (i.e. solution of (2.61), (2.35), (2.67) and (2.68), up
to the calculation of «) was provided by the results of Reynolds & Potter (1967) for the com-
bined Poiseuille/Couette flow of a homogeneous fluid. The results of their calculations for the
value of 0.3 for their parameter uyw were transformed into the non-dimensionalization used
here and are presented, with our calculations for the same profile, in table A5. (Note that
Uy = 1/(1+4uy) is the relation between the parameters describing the basic flow profiles.
Also, the Reynolds number in our scaling is given by (1+uw) times the Reynolds number in
the scaling of Reynolds & Potter (1967).) Again we have good agreement between the two sets
of results, and hence we can be reasonably confident that our program to calculate « is correct.

TABLE A5. CONSTANTS FOR NONLINEAR ANALYSIS OF COMBINED
PorseuiLLE-COUETTE FLOW OF A HOMOGENEOUS FLUID

from Reynolds & Potter numerical solution

(196%) (for U, = 0.7690)
(for u, = 0.3) with step length of 1/100
R, 14040 14059
k, 0.486 0.479
e 0.3215 0.3211
K (52.8, —106) (51.0, —105)

ArPENDIX B

In this appendix we give the details of the systems of equations leading to the definitions of
the critical constants a,, 4, and a,.

In the matrix formulation of the linear stability problem (§§2.3.1 and 2.3.2) the Orr-
Sommerfeld equation at critical conditions was written as

Wi-siw =0 )

. . (2.40)
no slip on boundarles.J
where W, and §; are terms in the expansion (2.39) and
i 0./ 0y —ike 0 07
(K2+or/ov) [ike  —op/ox BRe 0
1 iR T ik ,uRc+——p 0 ik (B 1)
—ikcor F+i2T .
—_— — ike 0
| p orpRE o

The quantities 7, p and u are the step functions given by (2.31b, ¢, d), and o is given by
(2.31a) with ¢ replaced by ¢r, as at critical conditions ¢ is real. A
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The system used to define g, is
Wie—81MWe = S, 1

. (2.42)
no slip on boundarles,J
where
' — ol (ay+ ) Jke 2 i 0 0
io—:(("r+5r+a1) __i a-l,‘(al +61') 0 0
kio? koo?
[4i0-ll‘(o'l' —a,—6)
S10 = pRo o7 ke i(0sta+acr) o |- B2
_Flay+e) R T(20: —cr —ay) pRe p
pko%
_i(or+a +ar) _Fla,+¢) —kiT(20: — 6 —ay) -
P pkeot |

As stated in §2.3.2, S}, can be written as (4+a,B), where 4 and B are 4 x 4 matrices inde-
pendent of a,, so that the solvability condition (2.43) gives a linear equation for a,.
Similarly, the system used to define 4, is

Wi1_S1Wil = Snwi 1

. . (2.46)
no slip on boundarles,J
where
[ ioyd, ke o2 0 0 0]
ordy/kio? ~ioydi/keo} u 0
S = ([t (e ) T (2] 04 - ®3)
- [ MReor (Rc+<rr po R: \kcor R ,uRitp 00
A F+k§T(idl __g_) o 0
P por R \kcor R |
Finally, the system used to define a, is
Wi =81 Ws = S1oMWio+ 812 Wil
. . (2.464)
no slip on boundaries, )
511 0 0 0
- 0 0
where Sp=| ™ n . (B 4a)
S31+ S0 S39 0 o
Su1 Sgo 0 0
‘The elements of the matrix in (B 44) are given by
_ oy i(or+ay+c¢r) (@ +¢r) _ _ o i(or+a;+cr)?
Su = kca_g [ 2+ kco'r s Sa1 = kﬁof as+ kco'r ’ (B 4ba C)
40, i(a; +er)? a 4 a
S31 =/7E—%:%[02+ ‘7;7:)_], Su =;2, S32 =/—”1—3;—;2 (Bd4d, e, f)
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___iF i(or+ay +cr) (a1+cr)]
and Sgp = SRR [a2+ Foos

i7T . )
+p—~_;%20'2 [—azke+3i(a,+er) —i(or+a,+¢r)2/0r]. (B 4g)
cYr

The differential systems defining the critical constants can also be cast as non-homogeneous
fourth-order problems, in which case the adjoint system is (2.35) and the condition (2.36) is
used when applying solvability conditions. Thus, by using the expansions (2.38), the fourth-
order system leading to the definition of a, is

Dy =Pp=0 on y=1,
Lk, D19) = 1D1[Ur +2k5(Up —¢x)] — [4ke/Re +1(Up + ;)] (P — k3 Dy),

¢10 = ¢1o: ]
, uy(a; +¢;) . '
blo— bilu b(kcla-g U ¢ = (Lhs.:lc. > u.c.),

1o+ k2 o+ 2k py = p(Lhs.:Le. > u.c.), .
6ke .0, , on y=
Q(ke: $ro) — 5 81~ ilB1 (i +03) — i) (B5)
(—up+2¢.+ay) — k2 T'(Bup — 4, — ay)
Rio}

., F
—ig,

= p(Lhs.:le. > u.c; v>1; T > 0),]

ke b0 = il + 202, —)] = 22 +ilun +.) | (91— i)

$ro=010=0 on y=—d

The parameters p, u, v and T are now the constants defined in §2.1 and the shorthand notation
introduced in §2.3.3, (2.63), has been used to simplify the interface conditions. The operators
L, I, g and @ are defined in (2.61).

Similarly, the system obtained at O(R — R.) which leads to the definition of 4, is

D,=P,=0 on y=1
L(ke, P11) = —dy(P] k5 Dy) — (DI — 2k D) + k¢ Py) [ R}

¢ = Py
, U iuyd
d— bo?iu—l?;%':“l’ ¢, = (Lhs.:lc. > u.c.)
4+ kid = p(lhs.:le. - u.c.) on y=20) (B6)
o , F+BT (d, ik
alke, )~y —ike(B10e— b11h) [Re = by i (4 )
= p(Lhs.:lc. > u.c.; T — 0)]

Ukey $1a) = —da(P1—kiy) — (1) — 2k h] + k3 1) / VRS
$11 = ¢ =0 on y=—dom J
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Finally, the system that leads to the definition of a, is
Dy, =D, =0 on y =1,
L(ke, Pra) = iD1o[ Uy + 2k5(Unp — )] = [4ke/ Re +i(Un +a,)] (Pl — k5 Pso)
+ ay (D] — k2 D)) +iko Dy (B3UL, —cr + 2ay) — (2/R,) (D] — 3k2D,),
P12 = D, ]

;U ¢12 ub(al + €r> (up +ba1) (ay+¢)] w
Pra— + P10 + ¢, [la koo Foo?

C l’

%

/
A
A A

= (Lh.s.:lc. > u.c.)

—
§ . Do+ k2Ps+ 2k pio+ @y = p(Lhs.:lc. > u.c),
olm 6k ,
e a q(kes P12) — VR, B0 —i[@10(un +ay) — Proup) on y=0 (B7)
O +ig F(uy—2¢, —a,) + k2 T (Bup, — 4¢. — ay)
: O 10 R2 2
v 3 F+RT
~ R, ¢+ (¢1+¢1 Ro? )

F+R2 T
+ Zg;k [(al + Cr) 2 +0-1i0 + kg T(3ub - 561‘ et 2a1):|

p(Lhs.:le. > ucc; v—>1; T 0),
Uk, ra) = ipo[ur, + 2k2(up, —¢r)] — [4ke/VRe +i(up +ay)] (G0 — k2 P1o)
+ay(P1 — k2hy) +ikc by (Bup — e+ 2a;) — (2/VR.) (P71 — 3ke 1)
1o =¢12 =0 on y=-—d
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